
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2012

Ruby Containers, Blocks, and Procs

1

The Plan

•  Ruby container data structures
•  Blocks and control structures (iterators, etc.)
•  Blocks and first-class closures

•  Later:
–  Duck typing
–  Inheritance
–  Modules and mixins

2

Containers in Ruby

•  Like most scripting languages, Ruby provides very
general container classes

•  Two major kinds
–  Arrays: ordered by position
–  Hashes: collections of <key, value> pairs

•  Often known as associative arrays, maps, or
dictionaries

•  Unordered

Ruby Arrays

•  Instances of class Array
•  Create with an array literal, or Array.new

words = ["how”,"now”,"brown”, "cow"]
stuff = ["thing", 413, nil]
seq = Array.new

•  Indexed with [] operator, 0-origin; negative indices
count from right

words[0] stuff[2] words[-2]
seq[1] = "something"

Ruby Hashes

•  Instances of class Hash
•  Create with an hash literal, or Hash.new

pets = { "spot"=>"dog","puff"=>"cat" }
tbl = Array.new

•  Indexed with [] operator
pets["puff"] pets["fido"]
Pets["cheeta"] = "monkey"

–  Can use almost anything as key type; can use
anything as element type

Containers and Iterators

•  All containers respond to the message “each”,
executing a block of code for each item in the
container

words.each { puts "another word" }
words.each { | w | puts w }

Blocks

•  A block is a sequence of statements surrounded by
{ … } or do … end

•  Blocks must appear immediately following the
method call that executes them, on the same line

•  Blocks may have 1 or more parameters at the
beginning surrounded by | … |
–  Initialized by the method that runs (executes,

“calls”) the block

Blocks as Closures

•  Blocks can access variables in surrounding scopes
Wordlist = ""
words.each { |w| wordlist = wordlist +
 w + " " }

–  These are almost, but not quite, first-class
closures (some differences in scope rules
compared to Racket)

More Block Uses

•  Besides iterating through containers, blocks are used
in many other contexts

3.times { puts "hello" }

n = 0
100.times { | k | n += k }
puts "sum of 0 + … + 99 is " + n

Block Execution

•  Any method call can be followed by a block. The block
is executed by the method – when depends on the
method

•  A block is executed in the context of the method call
–  Block has access to variables at the call location
–  Return in a block returns from surrounding method(!)

def search(x, words)
 words.each { | w | if x==w return }
 puts "not found"
end

yield

•  Any method call can be followed by a trailing block.
A method “calls” the block with a yield statement.

def repeat Output:
 yield hello
 yield hello
end
repeat { puts "hello" }

yield with arguments

•  If the block has parameters, use expressions with
yield to pass arguments

def xvii
 yield 17
end
xvii { | n | puts n+1 }

–  This is exactly how an iterator works

Blocks are “second-class”

•  Blocks (and methods) are not objects in Ruby – i.e.,
not things that can be passed around as first-class
values

•  All a method can do with a block is yield to it (i.e.,
call it)
–  Can’t return it, store it in an object, etc.
–  But can also turn blocks into real closures (next

slide)

First-class closures

•  Implicit block arguments and yield are often sufficient
•  But when you want a closure that can be returned,

stored, passed as an argument:
–  The built-in Proc class
–  Lambda method of Object takes a block and

makes a Proc
–  Instances of Proc have a call method that can

be used to execute them

Creating Procs: examples

•  Create a Proc object explicitly

p = Proc.new { | x, y | x+y }
…
p.call(x,y)

•  Use Object’s lambda method

is_positive = lambda { |x| x > 0 }

Procs vs. Lambdas

•  A Proc is a block wrapped in an object – and
behaves just like a block
–  In particular, a return in a Proc will return from the
surrounding method where the Proc’s closure was
created

•  Error if that method has already terminated
•  A Lambda is more like a method

–  Return just exits from the lambda

